

 Development of Premix for Rice Flour Bread Using Guar Gum as a Binderวิงากรก์ สอกว̄๓ร์

Chiraporn Sodchit
ธัsws חנŪงเก̄ก
Teeraporn Kongbangkerd

กuกกาuก์ วีระกุล
Kanokkan Weeragul

Abstract

The objective of this research was to study rice - flour based premix for bread making by using guar gum as a binder. Four different levels (based on flour weight) of guar gum ($0.5,1.5,2.5$ and 3.5%) and water content ($80,90,100$ and 110\%) were studied. Substitution of isolate soy protein (ISP) (5, 10, 15 and 20%) for rice flour by varying water content (85,95 and 105%) was also investigated for sensory acceptability. The bread from the premix was tested for their physical, chemical and sensory properties. The results showed that the most accepted guar gum formula composed of 0.5% guar gum, 10% ISP and 105% water. The best ratio of rice flour : ISP: guar gum was $90: 10: 0.5$. The proteln and moisture content were 6.55% and $10,53 \%$, respectively. The obtained premix was then tested with com oil and sunflower oil ($3,4,5$ and 6%) and the resulting bread was tested for their properties. It was found that 5% corn oll gave the most acceptance. The specific volume, water loss and moisture content of the bread were $2.02 \mathrm{~cm}^{3} / \mathrm{g}, 5.45 \%$ and 45.78%, respectively.

Keyword: Guar gum, Rice flour bread, Isolated soy protein.

[^0][^1]
uกก̄กย่อ

การผลิตแบ้งข้าวเจ้าสำเร็จรูป เพื่อผลิตขนมปัง โดยใช้กัวร์กัมเป็นสายยืดเกาะในปริมาณร้อยละ 0.51 .52 .5 และ 3.5 ปริมาณน้ำร้อยละ 8090100 และ 110 ของ น้ำหนักแป้ง เสริมโปรตีนถั่วเหลืองสกัดโดยการแทนที่ แบ้งข้าวเจ้าปริมาณร้อยละ 51015 และ 20 และใช้ ปริมาณน้ำร้อยละ 8595 และ 105 ของน้ำหนักแป้ง ตรวจ คุณสมบัติทางกายภาพ เคมี และการยอมรับทางประสาท สัมผัสของขนมปัง พบว่าขนมปังสูตรที่ใช้กัวร์กัก ร้อยละ 0.5 โปรตีนถั่วเหลืองสกัดร้อยละ 10 และ น้ำร้อยละ 105 ของ น้ำหนักแบ้งได้รับการยอมรับสูงสุด $(p<0.05)$ นำแป้ง ข้าวเจ้า โปรตีนถั่วเหลืองสกัด และกัวร์กัมมาผสมรวมกันเพื่อ ผลิตแป้งข้าวเจ้าสำเร็จรูป พบว่าอัตราส่วนที่เหมาะสมที่สุด

ของแป้งข้าวเจ้าสำเร็จููปปรกอบด้วย แป้งข้าวเจ้า : โปรตีน ถั่วเหลืองสกัด: กัวร์กัม เท่ากับ $90: 10: 0.5$ ผลิตภัณฑ์แป้ง ข้าวเจ้าสำเร็จรูปมีเปรตีนร้อยละ 6.55 และความนื้นร้อยละ 10.53 นำแป้งข้าวเจ้าสำเร็จููปมาผลิตขนมปัง ศึกษา บริมาณน้ำมันข้าวโพดและน้ำมันเมล็ดทานตะวันที่ใช้บริมาณ ร้อยละ 345 และ 6 ตรวจคุณสมบัติทางกายภาพ เคมี และทางประสาทสัมผัสของขนมปัง พบว่าสูตรขนมปัง ที่ใช้น้ำมันข้าวโพดร้อยละ 5 ได้ร้บการยอมรับทางประสาท สัมผัส สูงสุด $(p<0.05)$ โดยขนมปังที่ได้มีปริมาตรจำเพาะ 2.02 ลูกบาศก์เซนติเมตรต่อกรัม การสูญเสียน้ำระหว่าง การอบร้อยละ 5.45 และผลิตภัณฑ์มีความชื้นร้อยละ 45.78

คำนำ

ข้าวเป็นอาหารหลักของประชากรไทยและประเทศ อื่นๆ ในแถบเอเชีย พื้นที่ของประเทศไทยเหมาะสมกับ การปลูกข้าวได้ดี ทำให้สามารถผลิตข้าวได้เป็นจำนวนมาก แต่ในปัจจุบันประเทศเพื่อนบ้าน เช่น พม่า ลาว และเวียดนาม เป็นต้น ได้มีการสงเสริมการผลิตข้าวเพื่อการสงออกไปยัง ประเทศแถบยุโรปมากขึ้น แม้ว่าข้าวจะมีคุณภาพต่ำกว่าข้าว ที่ผลิตจากประเทศไทยเล็กน้อย แต่ราคาข้าวจากประเทศ เหล่านี้ต่ำกว่าประเทศไทยมาก ทำให้ประเทศผู้นำเข้านิยม สั่งซื้อจากประเทศเพื่อนบ้านเพิ่มขึ้น เป็นผลให้ประเทศไทย ส่งออกข้าวได้ในปริมาณที่ลดลง และราคาค่อนข้างถูก ดังนั้นึึงควรสงเสริมให้มีการใช้ประโยชน์จากข้าวให้มากขึ้น ในการใช้ข้าวผลิตผลิตภัณฑ์ต่างๆ นั้นส่วนใหญ่ต้องแปรรูป เป็นแป้งก่อน ตัวอย่างผลิตภัณฑ์จากแป้งข้าวเจ้าที่สำคัญ ได้แก่ อาหารเส้น เช่น เส้นขนมจีน เส้นก๋วยเตี๋ยว นอกจากนี้ ยังมีการผลิตเป็นผลิตภัณฑึกึ่งสำเร็จููปอีกด้วย

ขนมปังเป็นผลิตภัณฑ์ชนิดหนึ่งที่พลเมืองในแถบ เอเซียนิยมบริโภคเพิ่มขึ้นควบคู่ไปกับการรับประทานข้าว ใน ประเทศไทย ปัจจุันมีการบริโกคขนมปังกันอย่างแพร่หลาย ขนมปังโดยทั่วไปจะผลิตจากแป้งสาลี แต่เนื่องจากประเทศ ในแถบเอเชียรวมทั้งประเทคไทยไม่ได้ปลูกข้าวสาลีเป็น ธัญพืชหลักต้องนำเข้าแป้งสาลีจากต่างประเทศ เช่น ประเทศ สหรัฐอเมริกา ประเทศแคนาดา ทำให้ต้นทุนในการผลิต ขนมปังสูง จึงได้มีการพัฒนาโดยใช้แป้งชนิดอื่นมาทำขนม ปังแทน (Nishita et al. , 197@) เพื่อลดต้นทุนการผลิตใน

การทดลอฺนนำแป้งชนิดอื่น เช่น แป้งข้าวโพด แป้งข้าวเจ้า แป้งมันสำปะหลัง มาใช้ในการทำขนมปัง ขนมปังที่ได้จะมี ปริมาณโปรตีนต่ำกว่าขนมปังจากแฟ้งสาลี (องทัย และณัฐีี, 2529) ดังนั้นจึงได้มีการนำแป้งถั่วเหลือง ซึ่งมีเปรตีนสูงมา เสริมเข้าไปในสูตรขนมปังจากรัญพืชอื่นๆ ด้วย

กัวร์กัม (Guar gum) เป็นสารประกอบ galacto mannan มี D-mannose และ D-galactose ในอัตรา สว่น mannose : galactose ประมาณ $2: 1$ มีน้ำหนักโมเลกุล ประมาณ $220,000-250,000$ ได้จากพืชตระกูลถั่ว ซึ่งมี ชื่อทางวิทยาศาสตร์ว่า Cymopsis tetragonolobus ปลูก มากในประเทศปากีสถานและอินเดีย เพื่อใช้เป็นอาหารสัตว์ กัวร์กัมจะมีคุณสมบัติที่ดีกว่ากัมชนิดอื่นๆ คือ สามารถดุดน้ำได้อย่างรวดเร็ว ในน้ำเย็นให้สารละลาย colloid ที่หนืด สำหรับความหนืดที่เกิดขึ้นจะขึ้นกับเวลา อุณหภูมิ ความเข้มข้น ความเป็นกรด - ด่าง และขนาด อนุภาคของกัม สำหรับความหนืดสูงสุดจะวัดได้ภายใน 2 ซั่วโมง ในน้ำเย็นความสามารถในการดูดน้ำและความหนีด จะเพิ่มขึ้นเมื่ออุณหภูมิเพิ่มขึ้นสารละลายที่ได้จะขุนเล็กน้อย เนื่องจากมีเส้นใยและเซลลูโลสปนอยู่ สารละลายกัวร์กัม ร้อยละ 1 จะให้ความหนืด $2,700 \mathrm{cps}$. ความเป็นกรด - ด่าง $5.5-6.1$ และถ้าตั้งทิ้งไว้ ความเป็นกรด - ด่างจะลดลง กัมชนิดนี้ค่อนข้างจะคงตัวในช่วงความเป็นกรด - ด่างที่ ค่อนข้างกว้าง $4.0-10.5$ และมีคุณสมบัติเป็นบัฟเฟอร์ (buffer) เล็กน้อย

การใช้กัวร์กัม่ในอุตสาหกรรมอาหารนั้น นิยมใช้มาก ในผลิิภภัณฑ์เนยแข็ง ไอศกรีม เพื่อเป็นสารให้ความคงตัว (stabilizer) และยังเช้เป็นสารให้ความหนืดในน้ำสลัด ซอส และเครื่องดื่มต่างๆ | เป็นต้น นอกจากนี้ยังมีการนำมาใช้ใน ผลิตภัณฑ์ขนมปัง เนื่องจากกัวรรกัมมีคุณสมบัติในการกักเก็บ น้ำไว้ ลดการเป็นก้อนในระหว่างนวดโด (dough) ช่วย ปรับปลุงคุณภาพของโดให้เป็นเนื้อเดียวกัน และยังลดการ สูญเเียน้ำในระหว่างการอบอีกด้วย

Codex Alimentarius Commissions ได้อนุญาต ให้เช้สารนี้ได้ และได้กำหนด Acceptable Dairy Intake เป็น non specified ส่วนในประเทศไทยตามประกาศกระทรวง สาธารณสุขจบับที่ 84 อนุญาตให้ใช้ในอาหารได้ เช่นกัน

เพื่อเป็นการใใช้ประโยฯน์จากแป้้ข้าวเจ้าโดยทำเป็น ผลิตภัณฑ์มูลค่าเพิ่มงานวิจัยนี้จืจงได้มีการศึกษาและพ้ฒนา สูตรกรรมวิธีการผลิตขนมปังจากแป้งข้าวเจ้า โดยการเติม กัวร์กัมเพื่อทำหน้าที่เป็นสารยืดเกาะในสูตวขนมบัง ศึกษา ผลของการแทนที่แบ้งข้าวเจ้าบางส่วนด้วยโปรตีนถั่วเหลือง สกัด ผลิตแป้งข้าวเจ้าสำเร็จููปเพื่อผลิตขนมปัง และศึกษา ผลของชนิดและปริมาณไขมันที่ใชใในสูตรขนมปังแป้งข้าวเจ้า รวมทั้งการปรับปริมาณน้ำให้เหมาะสมกับสูตร ซึ่งการผลิต ขนมปังจากแป้งข้าวเจ้าเป็นแนวทางหนึ่งในการลดการนำเข้า แป้งสาลี นอกจากนี้ขนมปังที่ผลิตจากแป้งข้าวเจ้ายังมี ประโยชน์สำหรับผู้ที่แพ้แแ้งสาลี ซึ่งเกิดขึ้นได้ทั้งในเด็กวัย 6 สัปดาห์ จนถึงผู้ใหญ่ (Bowman et al., 1973)

อุUกรヘ์Iละวิธีการ

1. การศึกษาการผลิตขนมปังจากแป้งข้าวเจ้าโดยใช้ กัวร์กัม เป็นสารยึดเกาะ

1.1 การผลิตขนมปัง

นำแป้งข้าวเจ้าที่มีปริมาณอะไมโลสอยู่ระหว่าง ร้อยละ $15-17$ (สุนทร, 2533) มาผลิตขนมปังโดยมีส่วน ผสมของแป้งข้าวเจ้า น้ำมันพืช เกลือ น้ำตาล ยีสต์ผง สำเร็จรูป และนมผงพร่องมันเนย ในอัตราส่วน $100: 6$: $1.5: 6.5: 2.0: 6.0$ ตามลำดับ (ดัดแปลงจากสูตรและ วิธีการของอรทัยและณัสูี , 2529) โดยเติมกัวร์กัม ร้อยละ 0.51 .52 .5 และ 3.5 ของน้ำหนักแป้ง่่อนรวมกับแป้ง ข้าวเจ้าและกำหนดปริมาณน้ำร้อยละ 8090100 และ 110 ของน้ำหนักแป้ง
1.2 ตรวจสอบลักษณะของขนมปัง

ตรวจสอบลักษณะปรากฏของเปลือกและเนื้อใน ขนมปัง ลักษณะการเรียงตัวของเซลล์อากาศโดยการตัด ขนมปังตามขวาง วัดบริมาตรจำเพาะของขนมปังโดยใชิวิธีการ แทนที่งาในภาชนะที่ปริมาตรแน่นอน (มอก. $374-2534$) หาปริมาณการสูญเสียน้ำระหว่างการอบ วิเคราะห์ปริมาณ ความนื้นของษนมปัง (AOCS , 1978) ทดสอบการยอมรับ ทางประสาทสัมผัสของขนมปังแบบ $9-$ point hedonic scale เพื่อเลือกปริมาณกัวร์กัมที่เหมาะสมและนำไปศึกษา ผลของการแทนที่แป้งข้าวเจ้าบางสวนด้วยโปรตีนถั่วเหลือง สกัด
2. การศึกษาผลของการแทนที่แป้งข้าวเจ้าบางส่วนด้วย โปรตึนถั่วเหลืองสกัด (Isolated soy protein) จากสูตรที่เหมาะสมในข้อ 1 นำมาศึกษาปริมาณ โปรตีนถั่วเหลืองสกัดในการแทนที่แป้งข้าวเจ้าที่เหมาะสม ในสูตรเพื่อเสริมโปรตีน โดยใช้ปริมาณร้อยละ 51015 และ 20 ของน้ำหนักแบ้งและกำหนดปริมาณน้ำร้อยละ 85 95 และ 105 ของน้ำหนักแป้ง

จากนั้นตรวจสอบลักษณะปรากฏของเปลือกและ เนื้อในขนมปัง หาปริมาตรจำเพาะ ปริมาณการสูถเเียน้ำ ระหว่างการอบวิเคราะห์ปริมาณความชื้นวิเคราะห์ปริมาณ โปรตีนของขนมปัง $(A O C S, 1978)$ และทดสอบการยอมรับ ทางประสาทสัมผัสเพื่อคัดเลือกสูตรที่เหมาะสม สำหรับการ ผลิตสูตรแป้งข้าวเจ้าสำเร็จรูปที่เหมาะสมต่อไป
3. การผลิตแป้งข้าวเจ้าสำเร็จรูปเพื่อผลิตขนมปัง

ผลิตแป้งข้าวเจ้าสำเร็จรูปจากสูตรที่ได้รับการยอมรับ ทางประสาทสัมผัสสูงสุดจากข้อ 2 โดยมีสวนผสมคือ แป้ง ข้าวเจ้า โปรตีนถั่วเหลืองสกัด แลกััวรักัม เป็นวัตถุดิบหลัก ซึ่งผู้บริโภคไม่ต้องเติมสวนผสมอื่นที่ช่วยเพิ่มคุณสมบิติของ แป้งข้าวเจ้าในการผลิตขนมปัง แป้งข้าวเจ้าสำเร็จูปนี้จะเพิ่ม ความสะดวกในการผลิต ในสูตรมีอัตราสวนของน้ำ ไขมัน และส่วนผสมชนิดอื่นๆ ที่ใช้ คือ น้ำตาล 6.5 กรัม เกลือ 1.5 กรัม นมผงพร่องมันนยย 6 กรัม ยีสต์ผงสำเร็จุูป 2 กรัม ต่อแป้งข้าวเจ้า สำเร็จููป 100 กรัม (Nishita et al. , 1976)
4. การศึกษาผลของชนิดและปริมาณไขมันที่ใช้ในสูตร ขนมปังจากแป้งข้าวเจ้าสำเร็จรูป

นำแป้งข้าวเจ้าสำเร็จรูปในข้อ 3 มาผลิตขนมปัง รวมทั้งศึกษาชนิดปริมาณไขมันที่เหมาะสมโดยใช้น้ำมัน ข้าวโพด และน้ำมันเมล็ดทานตะวันปริมาณร้อยละ 345 และ 6 ของน้ำหนักแป้ง จากนั้นตรวจสอบลักษณะปรากฏ

ของเปลือกและเนื้อในขนมปัง ลักษณะการเรียงตัวของเซลล์ อากาศโดยการตัดขนมปังตามขวาง ปริมาตรจำเพาะ ปริมาณ การสูณฺสสียน้ำระหว่างการอบ ปริมาณความชื้น และทดสอบ ค่าการยอมรับทางประสาทสัมผัส เพื่อคัดเลือกชนิดและ ปริมาณมองไไมันที่เหมาะสม สำหรับนำไปผลิตขนมปังจาก แป้งข้าวเจ้าสำเร็จููป

แลเละวิวารก์

1. การศึกษาการผลิตขนมปังจากแป่งข้าวเจ้าโดยใช้ กัวร์กัมเป็นสารยึดเกาะ

จากการศึกษษาผลของกัวร์กัมเป็นสารยืดเกาะ ร้อยละ 0.51 .52 .5 และ 3.5 ของน้ำหนักแป้ง และกำหนด ปริมาณน้ำร้อยละ 8090100 และ 110 ขของน้ำหนักแป้ง คุณภาพทางประสาทสัมผัสของขนมปัง (Table 2)
Table 1. Effect of guar gum and water on bread quality.

Quantities of guar gum and water (\%)	Specific volume $\left(\mathrm{cm}^{3} / \mathrm{g}\right)$	Water loss (\%)	Moisture content (\%)	Characteristics of the bread
Guar gum 0.5				
Water 80	$1.27^{\text {a }}$	$5.68{ }^{\text {d }}$	$42.62^{\text {a }}$	White, hard crust and crumb
90	$1.62{ }^{\text {b }}$	$5.65{ }^{\text {d }}$	$42.98{ }^{\text {b }}$	White, little soft crust and crumb
100	$1.91^{\text {c }}$	$5.63{ }^{\text {d }}$	$43.32^{\text {c }}$	White,moistened, soft and sticky crust and crumb
110	-	-	-	No dough
Guar gum 1.5				
Water 80	-	-	-	No dough
90	$1.54{ }^{\text {b }}$	$5.49{ }^{\text {c }}$	$43.53^{\text {cd }}$	White, little soft crust and crumb
100	$1.73{ }^{\circ}$	$5.33{ }^{\text {b }}$	$43.55^{\text {cde }}$	White, fairly soft crust and crumb
110	$1.86{ }^{\text {e }}$	$5.37^{\text {b }}$	$43.78{ }^{\text {def }}$	White ,moistened, soft and sticky crust and crumb

Guar gum 2.5

Water 80	-	-	-	No dough
90	1.57^{b}	4.74^{a}	$43.87^{\text {ef }}$	White , little hard crust and crumb
100	1.60^{b}	4.73^{a}	43.93^{\dagger}	White, fairly soft and sticky crust and crumb
110	$1.84^{\text {de }}$	4.71^{a}	$44.07^{\text {a }}$	White , moistened , soft and sticky crust and crumb

Guar gum 3.5

Water 80	-	-	-	No dough
90	-	-	-	No dough
100	$1.75^{\text {cd }}$	4.67^{a}	44.83^{g}	White, soft and sticky crust and crumb
110	$1.82^{\text {cde }}$	4.67^{a}	45.41^{n}	White, moistened, soft and sticky crust and crumb

In the column, means followed by the same superscript are not significantly different ($p>0.05$).

- Means no dough
 ระหว่างตูตตฯนมมังที่มีปริมาณสารยีดเกาเท่ากันศูตที่ใด้ ปริมาณน้ำสูง ไห่ค่าปริมาตรจำเแาะสูงว่า และเมื่อำมา ผลต่อปริมาตรจำเพาะของงนมบัง โดยเมื่อเพิมมริมาณ กัวรักัมหรือบริมานผ้ำจะทำใหน้ริมาตรจำเพาะมีค่าสูขี้น

และปฏิสัมพันธ์ระหว่างบริมาณกัวร์กัมและปริมาณน้ำเป็นไป ในทิศทางเดียวกัน เนื่องจากกัวรักัมทำหน้าที่เป็นสารยึดเกาะ ทำให้ใดของขนมเปังเาะตัวกันได้ดี้ขึ้น สงงผลให้สามารถกักเก็บ แก๊สที่กิดขึ้นในระหว่างการหมักได้ดี สูตรท่ใใ้บริมาณกัวร์กัม และปริมาณน้ำน้อย ปริมาตรจำเพาะของขนมปังที่ได้จะต่ำ และเมื่อเพิ่มปริมาณกัวรักัมร่วมกับการเพิ่มปริมาณน้ำ พบว่า ปรืมาตรจำเพาะของขนมปังมีค่าเพิ่มขื้น

การสูญเสียน้ำระหว่างการอบขนมปังเมื่อนำมา วิเคราะห์ความแตกต่างทางสถิติ พบว่าสูตรขนมปังที่เติม กัวร์กัมร้อยละ 0.5 มีการสูญเสียน้ำระหว่างการอบสูงกว่า สูตตที่เติมกัวร์กัมร้อยละ 1.52 .5 และ 3.5 โดยขนมปัง สูตรที่มีการเติมกักร์กัมร้อยละ 3.5 มีค่าร้อยละการสูญเสีย น้ำระหว่างการอบต่ำสุด ขนมปังสูตรที่มีปริมาณกัวร์กัม เท่ากันแม่มีปริมาณน้ำต่างกัน พบว่ามีค่าร้อยละการสูมเสีย น้ำระหว่างการอบไม่แตกต่างกัน นอกจากสูตรที่เติมกัวร์กัม ร้อยละ 1.5 ปริมาณน้ำร้อยอละ 90 ของน้ำหนักแป้ง ค่าร้อยละ การสูญเเสียน้ำระหว่างการอบจะสูงกว่าสูตรที่ใช้บริมาณน้ำ ร้อยละ 100 และ 110 ของน้ำหนักแป้งอย่างมีนียสำคัญ
($p<0.05$) จากการิเเคราะห์ทางสถิติความสัมพันธ์ระหว่าง กัวร์กัมและปริมาณน้ำที่มีผลต่อร้อยละการสูญเสียน้ำระหว่าง การอบ พบว่าปริมาณกัวร์กัมมีผลต่อการสูญเสียน้ำระหว่าง การอบ ใดยเมื่อเพิ่มปริมาณกัวร์กัมร้อยละการสูญเสียน้ำ ระหว่างการอบของขนมปังจะมีเนวใน้มลดลง ทั้งนี้เนื่องจาก กัวร์กัมมีความสามารถในการอุ้มน้ำไว้วด้ดี และไม่สลายตัว ด้วยความร้อน จึงทำให้การสูกเสียน้ำในขนมปังแป้งข้าวเจ้า ในระหว่างการอบลดลง สำหรับปริมาณน้ำที่เติมในสูตรไม่มี ผลต่อการสูณเสียน้ำในระหว่างการอบและปฏิสิมพันธ์ระนว่าง ปริมาณกัวรักัมและปริมาณน้ำไม่มีผลต่อการสูญเเีียน้ำใน ระหว่างการอบของขนมปังแป้งข้าวเจ้า

ความชื้นของขนมปังทุกสูตรอยู่ในช่วงร้อยละ 42.62 -45.41 โดยขนมปังสูตรที่มีความซื้นต่ำสุดคือสูตรที่เติม กัวร์กัมร้อยละ 0.5 ปริมาณน้ำร้อยละ 80 ของน้ำหนักแป้ง และะมื่อเพิ่มปริมาณน้ำหวือปริมาณกัวรักัม พบว่าความขื้นของ ขนมปังจะเพิ่มขึ้น ($\mathrm{p}<0.05$) โดยสูตจรี่มีปริมาณความซื้นสูงสุด คือสูตรที่เดิมกัวร์ก้กร้อยละ 3.5 และปริมาณน้ำร้อยละ 110 ของน้ำหนักแป้ง

Table 2. Effects of guar gum and water content on sensory evaluation of rice bread.

Quantities of guar gum and water (\%)	Color	Odor	Texture	Taste	Air cell	Acceptability
Guar gum 0.5						
Water 80	$6.90^{\text {a }}$	$6.20{ }^{\text {a }}$	$5.40{ }^{\text {abc }}$	$5.80^{\text {a }}$	$4.70^{\text {a }}$	$6.33^{\text {ab }}$
90	6.70^{3}	$5.90^{\text {a }}$	$6.00{ }^{\text {abcd }}$	$6.20{ }^{3}$	$5.40^{\text {abc }}$	$6.50{ }^{\text {ab }}$
100	6.90^{3}	$6.30^{\text {a }}$	$6.60{ }^{\text {d }}$	$6.60{ }^{\text {a }}$	$6.40{ }^{\text {bcce }}$	$7.00{ }^{\text {b }}$
110	-	-			-	-
Guar gum 1.5						
Water 80	-	-	\cdot	-	-	
90	$7.30^{\text {a }}$	$6.60^{\text {a }}$	$5.90^{\text {abcd }}$	$6.00^{\text {a }}$	$5.30{ }^{\text {ab }}$	$7.10^{\text {b }}$
100	$7.30^{\text {a }}$	$6.70^{\text {a }}$	$6.40^{\text {bod }}$	$6.70^{\text {a }}$	$6.90{ }^{\text {d8 }}$	$6.90{ }^{\text {b }}$
110	. 6.80°	$6.50^{\text {a }}$	$5.40^{\text {abc }}$	$5.60{ }^{\text {a }}$	$5.90{ }^{\text {abccie }}$	$6.20^{\text {ab }}$
Guar gum 2.5						
Water 80	-	-	-	-		-
90	$7.00^{\text {a }}$	$6.00^{\text {a }}$	$5.10^{\text {a }}$	$5.80{ }^{\text {a }}$	$5.60{ }^{\text {abci }}$	$5.90^{\text {a }}$
100	$7.10^{\text {a }}$	$6.00^{\text {a }}$	$5.30^{\text {ab }}$	$5.70^{\text {a }}$	$6.10^{\text {bocde }}$	$5.80^{\text {a }}$
110	$7.20{ }^{\text {a }}$	$6.00^{\text {a }}$	$5.90{ }^{\text {abcd }}$	$6.10^{\text {a }}$	$7.20{ }^{\text {e }}$	$6.60{ }^{\text {ab }}$
Guar gum 3.5						
Water 80	-	-	-	-	-	-
90	-	-	-	-	-	-
100	$7.00^{\text {a }}$	$5.90^{\text {a }}$	$5.00^{\text {a }}$	$5.90^{\text {a }}$	$5.80^{\text {abcd }}$	$6.30{ }^{30}$
110	$7.00^{\text {a }}$	$6.30^{\text {a }}$	$6.50{ }^{\text {cd }}$	$6.30^{\text {a }}$	$6.70^{\text {ode }}$	$7.10^{\text {b }}$

จากผลการทดสอบคุณภาพทางประสาทสัมผัสใน ด้านต่างๆ ของขนมปังจากแป้งข้าวเจ้าที่ใช้กัวร์กัม และ ปริมาณน้ำต่างๆ กัน (Table 2) พบว่า สูตรขนมปังแป้งข้าวเจ้า ที่มีปริมาณกัวร์กัม ร้อยละ 0.5 และ 1.5 ของน้ำหนักแป้ง น้ำร้อยละ 8090100 และ 110 ของน้ำหนักแป้ง สูตรที่มี การเติมกัวร์กัมร้อยละ 2.5 น้ำร้อยละ 110 ของน้ำหนักแป้ง และสูตรี่มี่มางเติมกกรรักักร้อยอละ 3.5 น้ำร้อยอละ 100 และ 110 ของน้ำนนักแบ้ง ได้บับารยอมรับทางด้านความขอบ รมสสูสุดในระับชอบเล์กน้อยถึงชอบปานกลางอย่างมีนีย สำคัญทางสถิติ $(\mathrm{p}<0.05)$ สูตรี่ได้ว้บบการยอมรับทาง ประสาทสัมนัสสูงสุดด้านนน้้อสัมผัสแสะเซลล์อากาคคือ
 บมิมาณน้ำว้อยอละ 100 ของน้ำนนักแเบ้ง และสูตตที่มีาางเิิม กัวร์กักม้อยอละ 2.5 และ 3.5 ของน้ำหนนกแแบ้ง บริมาณน้ำ
 ด้านสี่ กลิ่น และรสศาติ พบว่าทุกสูตรการทดลองไม่

0.5 และปริมาณน้ำว้อยละ 100 ของน้ำหนักแป้ง เพื่อนำไป เสริมโปรตีนถั่วนลืองสกัดในการทดลองขั้นตอนต่อไป
 ยอมรับทางประสาฟสัมัสสูสูสุดไม่ต่างจากสูตตที่มี่าารใั้ ปริมาณกัวรรักัมเนระดับนี่สูงกว่า ($p>0.05$)

2. ศึกษาผลของการแทนที่แป้งข้าวเจ้าบางส่วนด้วย โปรตีนถั่วเหลืองสกัด

จากสูตที่ได้้บับารคัดเลือกใหข้อ 1 นำมาาึกษา ปริมาณโปรตีนถั่วเหลืองสกัด โดยทดแทนแป้งง้าวเจ้า ในสูตรบริมาณว้ว้ยละ 51015 และ 20 และกำหนด ปรมมาณน้ำว้อยละ 8595 และ 105 ของน้ำหนักเแ้ง ตรวจสอบลักษณะปรากฎของเปลือกและเนื้อในงนมปัง ปริมาตรจำเพาะ ปริมาณการสู円เสียน้ำระหว่างภารอบ ปริมาณความชื้น (Table 3) ทดสอบค่าการยอมรับทาง ประสาทสัมผัสแบบ 9 -point hedonic scale (Table 4) และโริมาณโปรดี่นของงนมนับ (Table 5)

Table 3. Effects of isolated soy protein and water on bread quality.

Quantities of isolated soy protein and water (\%)	Specific volume $\mathrm{cm}^{3} / \mathrm{g}$	Water loss (\%)	Moisture content (\%)	Characteristics of the bread
Rice flour bread (control) Isolate soy protein 5	$1.91{ }^{\text {b }}$	$5.63{ }^{\text {d }}$	$43.32^{\text {a }}$	White, moistened, soft and sticky crust and crumb
Water 85	$1.95{ }^{\text {c }}$	$5.63{ }^{\text {d }}$	$43.37^{\text {a }}$	Creamy-white,friable and hard crust and crumb
95	$2.02{ }^{\text {d }}$	$5.65{ }^{\text {d }}$	$43.41^{\text {a }}$	Creamy-white, fairly soft crust and crumb
105	$2.05{ }^{\text {d }}$	$5.64{ }^{\text {d }}$	$43.42^{\text {a }}$	Creamy-white, moistened, soft and sticky crust and crumb
Isolate soy protein 10				
Water 85	$1.93{ }^{\text {b }}$	$5.62{ }^{\text {d }}$	$43.89{ }^{\text {b }}$	Light yellow, fairly hard crust and crumb
95	$1.96{ }^{\text {c }}$	$5.61{ }^{\text {d }}$	$43.83{ }^{\text {b }}$	Light yellow, fairly soft crust and crumb
105	$2.02{ }^{\text {d }}$	$5.62{ }^{\text {d }}$	$44.06{ }^{\text {c }}$	Light yellow, moistened, soft and sticky crust and crumb
Isolate soy protein 15				
Water 85	$1.91{ }^{\text {b }}$	$5.38{ }^{\text {c }}$	$44.45{ }^{\text {d }}$	Creamy-yellow, fairly hard crust and crumb
95	$1.94{ }^{\text {c }}$	5.32°	$43.83{ }^{\text {e }}$	Creamy-yellow, moistened and sticky crust and crumb
105	$2.04{ }^{\text {d }}$	$5.34{ }^{\text {bc }}$	$44.67^{\text {e }}$	Creamy-yellow, moistened, soft and sticky crust and crumb
Isolate soy protein 20				
Water 85	$1.85{ }^{\text {a }}$	$4.93{ }^{\text {a }}$	$44.98{ }^{\text {f }}$	Creamy-yellow, fairly hard crust and crumb
95	$1.90{ }^{\text {b }}$	$4.96{ }^{\text {a }}$	$44.98{ }^{\text {f }}$	Creamy-yellow,soft and sticky crust and crumb
105	$1.96{ }^{\text {c }}$	$4.91^{\text {a }}$	45.07^{9}	Creamy-yellow, moistened, soft and sticky crust and crumb

[^2]เมื่อเสริมโปรตีนถั่วเหลืองสกัดในปริมาณร้อยละ 5 1015 และ 20 ของน้ำหนักแป้ง ลงในสูตรขนมปัง แป้ง ข้าวเจ้าที่มีปริมาณกัวรักัมร้อยละ 0.5 พบว่า ค่าปริมาตร จำเพาะของขนมปังมีค่าอยู่ในช่วง $1.85-2.05 \mathrm{~cm}^{3} / \mathrm{g}$ สูตร ที่มีปริมาตรจำเพาะสูงคือ สูตรที่เสริมโปรตีนถั่วเหลืองสกัด ร้อยละ 5 ปริมาณน้ำร้อยละ 95 และ 105 และสูตรที่เสริม โปรตีนถั่วเหลืองสกัดร้อยละ 10 และ 15 ปริมาณน้ำร้อยละ 105 โดยขนมปังมีปริมาตรจำเพาะอยู่ ระหว่าง $2.02-2.05$ $\mathrm{cm}^{3} / \mathrm{g}$ ขนมปังสูตตดังกล่าวจึงมีความฟู และเบากว่าขนมปัง สูตรที่ไม่มีการเสริมโปรตีนถั่วเหลืองสกัด การสูญเสียน้ำ ระหว่างการอบขนมปังมีค่าร้อยละ $4.91-5.65$ ปริมาณ ความชื้นของขนมปังอยู่ในช่วงร้อยละ $43.37-45.07$ ลักษณะของขนมปังจะมีสีเหลืองนวล และจะเป้มขึ้นเมื่อ เพิ่มปริมาณโปรตีนถั่วเหลืองสกัด ทั้งนี้เนื่องจากโปรตีน

ถั่วเหลืองสกัดมีสีเหลืองอ่อน และกรดอะมิโนไลซีนใน โปรตีนถั่วเหลืองสกัดยังชชวยให้เกิดปฏิกิริยาสีน้ำตาลอัน เนื่องมาจาก Maillard reaction เช่นเดียวกับการทดลองของ Ranhotra และคณะ (1975) นอกจากนั้นโปงตีนถั่วเหลือง ยังทำให้กลิ่นสาบของขนมปังลดลงเนื่องจากมีความสามารถ ในการจับกับ กลิ่นรสที่ไม่ดี (off - flavour) (Pomeranz, 1985 ; Arai , 1980 ; Chikubu ,1970) โดยพบว่าโป่รตีน ถั่วเหลืองสามารถจับกับเฮกซะนอลซึ่งเป็นสาเหตุหลักที่ ทำให้เกิดกลิ่นสาบได้ อีกทั้งกรดอะมิโนไลซีนยังเป็นตัวช่วย จับกับกลิ่นสาบได้ด้วย (Furuhashi and Agano, 1971) และ จากผลการทดลองพบว่าโปรตีนถั่วเหลืองสกัดร้อยละ 10 และปริมาณน้ำร้อยละ 105 จะให้ลักษณะของขนมปังนุ่ม สีของขนมปังเป็นสีเหลืองอ่อน และมีลักษณะปรากฏดีที่สุด เมื่อเปีียบเทียบกับสูตรอื่นๆ

Table 4. Effects of isolated soy protein and water on sensory evaluation of rice bread.

Quantities of isolated soy protein and water (\%)			Color	Odor	Texture	Taste	Air cell	Acceptability
Isolated soy protein 5								
Water	85		$6.90{ }^{\circ}$	$5.70^{\text {a }}$	$6.00^{\text {d }}$	$5.70^{\text {bc }}$	$6.50{ }^{\text {ci }}$	$6.20{ }^{\circ}$
	95		7.00°	$5.70^{\text {ab }}$	$5.70^{\text {d }}$	$5.60{ }^{\text {bc }}$	$6.10{ }^{\text {bcd }}$	$5.90{ }^{\text {bc }}$
	105		$6.70^{\text {bc }}$	$5.80{ }^{\text {ab }}$	$5.50{ }^{\text {cd }}$	$5.90^{\text {c }}$	$5.80^{\text {arc }}$	$5.80^{\text {bc }}$
Isolated soy protein 10								
Water	85		6.10°	5.90^{30}	$5.30^{\text {ca }}$	$5.60{ }^{\text {bc }}$	$5.70^{\text {abc }}$	5.88^{ke}
	95		$6.10^{\text {b }}$	5.80^{10}	$4.80{ }^{\text {bc }}$	$5.80{ }^{\text {bc }}$	$6.00{ }^{\text {bed }}$	$5.80{ }^{\text {ct }}$
	105		$6.10^{\text {b }}$	6.10°	$5.70^{\text {d }}$	$5.80{ }^{\circ 0}$	7.10°	6.30°
Isolated soy protein 15								
Water	85		$4.60{ }^{\text {a }}$	$5.30^{\text {a }}$	$4.20^{\text {ab }}$	$5.00^{\text {ab }}$	$5.50^{\text {acc }}$	$4.90^{\text {a }}$
	95		$4.70^{\text {a }}$	$5.30^{\text {a }}$	$4.20^{\text {ab }}$	$5.20{ }^{\text {abc }}$	$5.50^{\text {abc }}$	$5.00^{\text {ab }}$
	105		$4.20^{\text {a }}$	$5.40^{\text {a }}$	$4.20^{\text {ab }}$	$5.20{ }^{\text {abc }}$	$5.10^{\text {ab }}$	$6.30^{\text {c }}$
Isolated soy protein20								
Water	85		$4.20^{\text {a }}$	$5.40^{\text {a }}$	$3.60^{\text {a }}$	$4.70^{\text {a }}$	$4.70^{\text {a }}$	$4.50^{\text {a }}$
	95		$4.20{ }^{\text {a }}$	$5.40^{\text {a }}$	$3.90{ }^{\text {a }}$	$4.70^{\text {a }}$	$5.20^{\text {ab }}$	$4.50^{\text {a }}$
	105		$4.20^{\text {a }}$	$5.50^{\text {a }}$	$4.30^{\text {ab }}$	$4.60{ }^{\text {a }}$	$5.30^{\text {ab }}$	$4.90{ }^{\text {ab }}$

In the column, means followed by the same superscript are not significantly different ($p>0.05$).
จากการทดสอบดุณภาพฑางประสาทสัมผัสด้าน ข้าวเจ้าทุกสูตรที่มีการแนนที่แป้งด้วยโปงตีนถั่วเหลือง กลิ่น รสชาติ และเซลล์อากาศ พบว่าสูตรขนมปังแป้ง สกัดร้อยละ 5 และ 10 ได้บับการยอมรับสูงสุด $(p<0.05)$

เมื่อเสริมโปรตีนถั่วเหลืองสกัดในปริมาณร้อยละ 5 ถั่วเหลืองสกัดมีสีเหลืองอ่อน และกรดอะมิโนไลชีนใน 1015 และ 20 ของน้ำหนักแป้ง ลงในสูตรขนมปัง แป้ง ข้าวเจ้าที่มีปริมาณกัวรักัมร้อยละ 0.5 พบว่า ค่าปริมาตร จำเพาะของขนมปังมีค่าอยู่ในช่วง $1.85-2.05 \mathrm{~cm}^{3} / \mathrm{g}$ สูตร ที่มีปริมาตรจำเพาะสูงคือ สูตรที่เสิริมโปรตีนถั่วหหลืองสกัด ร้อยละ 5 ปริมาณน้ำร้อยละ 95 และ 105 และสูตรที่เสริม โปรตีนถั่วเหลืองสกัดร้อยละ 10 และ 15 ปริมาณน้ำร้อยละ 105 โดยขนมปังมีปริมาตรจำเพาะอยู่ ระหว่าง $2.02-2.05$ $\mathrm{cm}^{3} / \mathrm{g}$ ขนมปังสูตตดังกล่าวจึงมีความฟู และเบากว่าขนมปัง สูตรที่ไม่มีการเสริมโปรตีนถั่วเหลืองสกัด การสูญเสียน้ำ ระหว่างการอบขนมปังมีค่าร้อยละ $4.91-5.65$ ปริมาณ ความซื้นของขนมปังอยู่ในช่วงร้อยละ $43.37-45.07$ ลักษณะของขนมปังจะมีสีเหลืองนวล และจะเข้มขึ้นเมื่อ เพิ่มปริมาณโปรตีนถั่วเหลืองสกัด ทั้งนี้เนื่องจากโปรตีน โปรตีนถั่วเหลืองสกัดยังช่วยให้เกิดปฏิกิกิยาสีน้ำตาลอัน เนื่องมาจาก Maillard reaction เช่นเดียวกับการทดลองของ Ranhotra และคณะ (1975) นอกจากนั้นโปรตีนถั่วเหลือง ยังทำให้กลิ่นสาบของขนมปังลดลงเนื่องจากมีความสามารถ ในการจับกับ กลิ่นรสที่ไม่ดี (off - flavour) (Pomeranz, 1985 ; Arai , 1980 ; Chikubu ,1970) โดยพบว่าโปรตีน ถั่วเหลืองสามารถจับกับเฮกซะนอลซึ่งเป็นสาเหตุหลักที่ ทำให้เกิดกลิ่นสาบได้ อีกทั้งกรดอะมิโนไลซีนยังเป็นตัวช่วย จับกับกลิ่นสาบได้ด้วย (Furuhashi and Agano, 1971) และ จากผลการทดลองพบว่าโปรตีนถั่วเหลืองสกัดร้อยละ 10 และปริมาณน้ำร้อยละ 105 จะให้ลักษณะของขนมปังนุ่ม สีของขนมปังเป็นสีเหลืองอ่อน และมีลักษณะปรากฏดีีีี่สุด เมื่อเปียยบเทียบกับสูตรอื่นๆ
Table 4. Effects of isolated soy protein and water on sensory evaluation of rice bread.

Quantities of isolated soy protein and water (\%)	Color	Odor	Texture	Taste	Air cell	Acceptability
\|solated soy protein 5						
Water 85	$6.90^{\text {c }}$	$5.70{ }^{\text {ab }}$	$6.00^{\text {d }}$	$5.70^{\text {bes }}$	$6.50{ }^{\text {co }}$	$6.20{ }^{\text {c }}$
95	$7.00^{\text {c }}$	$5.70^{\text {ab }}$	$5.70^{\text {d }}$	$5.60{ }^{\text {bc }}$	$6.10^{\text {bcd }}$	$5.90{ }^{\text {bc }}$
105	$6.70^{\circ 0}$	$5.80{ }^{\text {ab }}$	$5.50^{\text {cd }}$	$5.90^{\text {c }}$	$5.80^{\text {abc }}$	$5.80{ }^{\text {bc }}$
Isolated soy protein 10						
Water 85	$6.10^{\text {b }}$	$5.90{ }^{\text {ab }}$	$5.30{ }^{\text {cd }}$	$5.60^{\text {be }}$	$5.70^{\text {abc }}$	$5.80{ }^{\text {bc }}$
95	$6.10^{\text {b }}$	$5.80{ }^{\text {ab }}$	$4.80{ }^{\text {bs }}$	$5.80^{\text {bc }}$	$6.00^{\text {bcd }}$	$5.80{ }^{\text {bc }}$
105	$6.10^{\text {b }}$	$6.10^{\text {b }}$	$5.70^{\text {d }}$	$5.80{ }^{\text {bc }}$	$7.10^{\text {d }}$	$6.30{ }^{\text {c }}$
Isolated soy protein 15						
Water 85	$4.60^{\text {a }}$	$5.30^{\text {a }}$	$4.20{ }^{\text {ab }}$	$5.00^{\text {ab }}$	$5.50^{\text {abc }}$	$4.90{ }^{\text {ab }}$
95	$4.70^{\text {a }}$	$5.30^{\text {a }}$	$4.20{ }^{\text {ab }}$	$5.20^{\text {acc }}$	$5.50^{\text {abc }}$	$5.00^{\text {ab }}$
105	$4.20^{\text {a }}$	$5.40^{\text {a }}$	$4.20{ }^{\text {ab }}$	$5.20^{\text {abc }}$	$5.10^{\text {ab }}$	$6.30^{\text {c }}$
Isolated soy protein20						
Water 85	$4.20{ }^{\text {a }}$	5.40^{2}	$3.60{ }^{\text {a }}$	$4.70^{\text {a }}$	$4.70^{\text {a }}$	$4.50^{\text {a }}$
95	$4.20{ }^{\text {a }}$	$5.40^{\text {a }}$	$3.90^{\text {a }}$	$4.70^{\text {a }}$	$5.20{ }^{\text {ab }}$	$4.50^{\text {a }}$
105	$4.20{ }^{\text {a }}$	5.50^{3}	$4.30^{\text {ab }}$	$4.60{ }^{\text {a }}$	$5.30^{\text {ab }}$	$4.90{ }^{\text {ab }}$

In the column, means followed by the same superscript are not significantly different ($p>0.05$).
จากการทดสอบคุณภาพทางประสาทสัมผัสด้าน ข้าวเจ้าทุกสูตรที่มีการแทนที่แป้งด้วยโปรตีนถั่วเหลือง กลิ่น รสชาติ และเซลล์อากาศ พบว่าสูตรขนมปังแป้ง สกัดร้อยละ 5 และ 10 ได้ร้บการยอมรับสูงสุด ($p<0.05$)

เมื่อเปรียบเทียบกับสูตรที่แทนที่แป้งด้วยโปรตีนถั่วเหลือง กักัดร้อยละ 15 และ 20 ส่วนคุณภาพทางด้านสี สูตรที่มี โปรตีนถั่วเหลืองสกัดร้อยละ 5 ได้รับการยอมรับสูงสุด รองลงมาคือ แทนที่ในปริมาณร้อยละ 10 แต่สูตรที่มี ปริมาณโปรตีนถั่วเหลืองร้อยละ 15 และ 20 ได้รับคะแนน การยอมรับต่ำสุด คุณภาพทางด้านรสชาติ พบว่าสูตรที่มี โปรตีนถั่วเหลืองสกัดร้อยละ 510 และ 15 ได้รับการยอม รับสูงกว่าสูตรที่มีโปรตีนถั่วเหลืองสกัดร้อยละ 20 เมื่อ ทดสอบคุณภาพด้านความชอบรวมที่มีต่อผลิตภัณฑ์ พบว่า

สูตตที่ได้รับการยอมรับสูงคือ สูตรที่แทนที่แป้งด้วยโปรตีน ถั่วเหลืองสกัดร้อยละ 5 และ 10 ปริมาณน้ำร้อยละ 8595 และ 105 และสูตรี่แทนที่แป้งในปริมาณร้อยละ 15 ปริมาณ น้ำร้อยละ 105 เนื่องจากต้องการเสิริมปปรตีนให้ได้ปริมาณมาก ที่สุดด ดังนั้นจึงคัดเลือกสูตรขนมปังแป้งข้าวเจ้าที่มีการแทน ที่แป้งด้วยโปรตีนถั่วเหลืองสกัดร้อยละ 10 ปรรมาณน้ำร้อยละ 105 เนื่องจากได้รับการยอมรับสูงสุด ทั้งคุณภาพด้านกลิ่น เนื้อสัมผัส รสชาติ และเซลล์อากาศ และยังได้ผลิตภัณฑ์ ที่มีลักษณะภายนอกของขนมปังนุ่มฟู มีสีเหลืองอ่อนอีกด้วย Table 5. Protein content of rice bread with and without condition of isolated soy protein

Bread sample	Protein content $(\%)$
Bread without isolated soy protein	3.82
Bread with isolate soy protein (10\% of flour)	6.55
105\% water and 0.5% guar gum	

จากผลการิเคราะห์พบว่าขนมปังสูตรที่เสิริมโปรตีน การเสริมโปรตีนประมาณ 2 เท่า ถั่วเหลืองสกัดร้อยละ 10 มีปริมาณโปงตีนสูงกว่าสูตตที่ไม่มี
3. การผลิตแป้งข้าวเจ้าสำเร็จรูปเพื่อผลิตขนมปัง สกัด : กัวร์กัม เท่ากับ $90: 10: 0.5$ โดยน้ำหนักแห้ง ตาม จากสูตทที่เหมาะสมในข้อ 2 นำแป้งข้าวเจ้า โปรตีน ลำดับ ใช้ตะแกรงร่อน 3 ครั้ง เก็บไว้ในภาชนะปิดสนิทนาน ถั่วหลืองสกัด และกัวร์กัมไปวิเคราะห์คาความชื้นและนำมา 3 วัน เพื่อให้แป้งเข้าสู่สภาวะสมดุล แล้วจึงวิเคราะห์ปริมาณ ผสมรวมกันในอัตราส่วนแป้งข้าวเจ้า : ไปรตีนถั่วเหลือง ความนื้น (Table 6)
Table 6. Moisture contents of different ingredients of the rice flour bread premix.

Ingredient	Moisture content
	$(\%)$
Rice flour	11.13
Isolated soy protein	9.82
Guar gum	10.32
Premix	10.53

เมื่อนำแป้งข้าวเจ้าสำเร็จููปที่ได้มาผลิตขนมปัง ต่อกรัม ร้อยละการสูญเสียน้ำระหว่างการอบ 5.62 พบว่าคุณภาพของขนมปังและการยอมรับทางประสาทสัมผ้ส ความชื้นร้อยละ 44.06 ตามลำดับ และได้รับการยอมรับ ไม่แตกต่างจากสูตรขนมปังที่ได้รับการคัดเลือกในข้อ 2 ทางประสาทสัมผัสด้านความชอบรวมในระดับชอบเล็กน้อย โดยขนมปังมีปริมาตรจำเพาะ 2.02 ลูกบาศก์เซนติเมตร ถึงชอบปานกลาง (Table 7)
Table 7. Sensory evaluation of bread from the premix.

Color	Odor	Flavor	Taste	Air cell	Acceptability
6.12	6.11	5.80	5.80	7.20	6.38

4. ศึกษาผลของชนิดและปริมาณไขมันที่ใช้ในสูตร น้ำหนักแป้ง ตรวจสอบลักษณะปรากฏของเปลือกและ

 ขนมปังแป้งข้าวเจ้าโดยใช้กัวร์กัมเป็นสารยึดเกาะ เนื้อในขนมปัง ปริมาตรจำเพาะ ปริมาณการสูญเสียน้ำ นำแป้งข้าวเจ้าสำเร็จรูบในข้อ 3 มาศึกษทปริมาณ ระหว่างการอบ ปริมาณความซื้น (Table 8) และทดสอบ ไขมันที่เหมาะสมในสูตร โดยใช้น้ำมันข้าวโพดและน้ำมัน คุณภาพทางประสาทสัมผัส (Table 9) เมลีดทานตะวัน บริมาณร้อยละ 345 และ 6 ของTable 8. Effects of different types and quantity of vegetable oil on quality of rice bread.

Quantities of isolated soy protein and water $(\%)$	Specific volume $\left(\mathrm{cm}^{3} / \mathrm{g}\right)$	Water loss $(\%)$	Moisture content $(\%)$	Characteristics of the bread
Corn oil 3	2.03^{a}	5.59^{a}	43.37^{a}	Creamy-yellow, moistened, soft and sticky crust and crumb Creamy-yellow, moistened , soft and sticky crust and crumb Creamy-yellow, moistened, soft and
4	2.01^{a}	5.57^{a}	44.54^{a}	5.45^{a}

In the column, means followed by the same superscript are not significantly different ($p>0.05$).
Table 9. Effect of different type and quanlity of vegetable oil on sensory evaluation of rice bread.

Type and quantities of vegetable oil $(\%)$	Color	Odor	Texture	Taste	Air cell	Acceptability
Corn oil						
3	6.80^{a}	6.00^{a}	6.00^{a}	6.30^{ab}	6.90^{a}	6.30^{a}
4	7.00^{a}	6.20^{a}	7.10^{bc}	6.60^{ab}	6.90^{a}	6.90^{b}
5	7.10^{a}	5.80^{a}	7.40^{a}	6.90^{b}	6.60^{a}	7.60^{o}
6	6.90^{a}	5.90^{a}	6.20^{ab}	6.40^{ab}	6.40^{a}	6.30^{a}
Sunflower ail						
3	6.60^{a}	5.70^{a}	5.80^{a}	6.00^{a}	6.90^{a}	6.10^{a}
4	6.90^{a}	6.20^{a}	6.10^{a}	6.50^{ab}	6.90^{ab}	6.40^{ab}
5	6.80^{a}	6.50^{a}	6.30^{ab}	6.70^{ab}	6.70^{ab}	6.60^{ab}
6	6.80^{ab}	6.50^{a}	6.30^{ab}	6.30^{ab}	6.30^{ab}	6.40^{ab}

[^3]จากการวิเคราะห์พบว่าทุกสูตรการทดลองมีค่า ปริมาตรจำเพาะอยู่ระหว่าง $2.01-2.03 \mathrm{~cm}^{3} / \mathrm{g}$ และค่า ร้อยละการสูญเสียน้ำระหว่างการอบอยู่ระหว่าง $5.45-5.59$ ซึ่งไม่มีความแตกต่างกันอย่างมีนัยสำคัญ $(p>0.05)$ เมื่อ วิเคราะห์ปัจจัยที่มีผลต่อค่าปริมาตรจำเพาะ และการ สูญเสียน้ำระหว่างการอบของขนมปังแป้งข้าวเจ้า พบว่า ทั้งชนิดและปริมาณน้ำมันพืชที่ใช้ในการทดลองไม่มีผลต่อ ค่าปริมาตรจำเพาะ และการสูญเสียน้ำระหว่างการอบ ค่า ความชื้นของขนมปังอยู่ระหว่างร้อยละ $43.37-45.96$ ซึ่ง ขนมปังสูตรที่ใช้ปริมาณน้ำมันพืชสูงกว่า จะมีความชื้นสูง กว่าขนมปังสูตรที่ใช้น้ำมันพืชในปริมาณที่ต่ำกว่า

ผลการทดสอบการยอมรับทางประสาทสัมผัสของ ขนมปัง พบว่า สูตรที่ใช้น้ำมันข้าวโพด และน้ำมันเมล็ดทานตะวัน ทุกระดับได้รับการยอมรับทางประสาทสัมผัส ด้านสี กลิ่น ลักษณะเซลล์อากาศไม่มีความแตกต่างกัน อย่างมีนัยสำคัญ $(p>0.05)$ ส่วนลักษณะด้านเนื้อสัมผัส พบว่า สูตรที่ใช้น้ำมันข้าวโพดร้อยละ 4 และ 5 ได้รับการ ยอมรับทางประสาทสัมผัสสูง โดยแตกต่างจากสูตรอื่นอย่าง มีนัยสำคัญ $(p<0.05)$ และสูตรที่ใช้น้ำมันเมล็ดทานตะวัน ร้อยละ 3 ซึ่งลักษณะค่อนข้างแห้ง ได้รับการยอมรับทาง

ประสาทสัมผัสด้านรสชาติต่ำสุด $(p<0.05$ ขนมปัง แป้งข้าวเจ้าสูตรที่ใช้น้ำมันข้าวโพดร้อยละ 4 และ 5 และ สูตรที่ใช้น้ำมันเมล็ดทานตะวันร้อยละ $4 \quad 5$ และ 6 ได้รับ การยอมรับทางประสาทสัมผัสด้านความชอบรวมสูงซึ่งไม่ มีความแตกต่างกันอย่างมีนัยสำคัญ $(\mathrm{p}>0.05)$ อย่างไรก็ตาม จากตารางที่ 9 จะเห็นได้ว่าขนมปังแป้งข้าวเจ้าสูตรที่ได้ร้บ การยอมรับทางประสาทสัมผัสสูงสุด คือสูตรที่ใช้น้ำมัน ข้าวโพดร้อยละ 5 ดังนั้นจึงคัดเลือกน้ำมันข้าวโพดร้อยละ 5 มาใช้ในสูตรการผลิตขนมปังจากแป้งข้าวเจ้าสำเร็จรูป 5. การเก็บรักษาแป้งข้าวเจ้าสำเร็จรูป จากผลการทดลองในข้อ 3 พบว่าองค์ประกอบ แต่ละชนิดของแป้งข้าวเจ้าสำเร็จรูปมีความชื้นอยู่ระหว่าง ร้อยละ $9-11$ และแป้งข้าวเจ้ามีความชื้นร้อยละ 10.65 ซึ่งเป็นปริมาณความชื้นของอาหารแห้งโดยทั่วไป สามารถ เก็บรักษาได้ที่อุณหภูมิห้องในสภาวะปกติ (จิราภรณ์, 2542) แต่เนื่องจากในแป้งข้าวเจ้าสำเร็จรูปมีส่วนผสมคือโปรตีน ถั่วเหลืองสกัดที่ทำให้เกิดกลิ่นหืนได้ง่ายจากปฏิกิริยาออโตออกซิเดชัน (autooxidation) ดังนั้นจึงควรเก็บรักษาใน สภาวะที่ปราศจากออกซิเจนและความชื้นต่ำ

๕Sุป

จากการผลิตสูตรแป้งข้าวเจ้าสำเร็จรูป เพื่อใช้ใน การผลิตขนมปังโดยใช้แป้งข้าวเจ้าที่มีปริมาณอะไมโลส ร้อยละ $15-17$ และใช้กัวร์กัมเป็นสารยึดเกาะ พบว่า การ ใช้กัวร์กัมร้อยละ 0.5 และเติมน้ำร้อยละ 105 ของน้ำหนัก แป้ง เป็นสูตรที่มีความเหมาะสมที่สุด การแทนที่ แป้งข้าวเจ้า บางสสวนด้วยโปรตีนถั่วเหลืองสกัดเพื่อเสริมโปรตีนในขนมปัง แป้งข้าวเจ้า พบว่าขนมปังแป้งข้าวเจ้าสูตรที่เสริมโปรตีน ถั่วเหลืองสกัดร้อยละ 10 ของน้ำหนักแบ้ง ได้รับการยอมรับ สูงสุด โดยสามารถเพิ่มปริมาณโปรตีนให้สูงกว่าสูตรขนมปัง แป้งข้าวเจ้าที่ไม่มีการเสริมโปรตีนประมาณ 2 เท่า การสร้าง สูตรแป้งข้าวเจ้าสำเร็จรูปเพื่อผลิตขนมปังควรใช้สวนผสม

ของแป้งข้าวเจ้า โปรตีนถั่วเหลืองสกัดและกัวร์กัมในอัตรา ส่วน $90: 10: 0.5$ ซึ่งผลิตภัณฑ์แบ้งข้าวเจ้าสำเร็จรูปจะ มีความชื้นร้อยละ 10.53 สำหรับชนิดและปริมาณของไขมัน ที่เหมาะสมในสูตรขนมปังแบ้งข้าวเจ้า พบว่า สูตรที่ผสม น้ำมันข้าวโพดร้อยละ 5 ได้รับการยอมรับและมีความ เหมาะสมมากที่สุด แป้งข้าวเจ้าสำเร็จรูปสามารถนำไปผลิต ขนมปังโดยมีอัตราส่วนของส่วนผสมในการผลิตที่เหมาะสม คือ แป้งข้าวเจ้าสำเร็จรูป น้ำตาล เกลือ นมผงพร่องมันเนย ยีสต์ผงสำเร็จรูป น้ำมันข้าวโพด และน้ำ เท่ากับ 1006.5 1.56 .02 .05 .0 และ 105 ตามลำดับ โดยแป้งข้าวเจ้า สำเร็จรูป 250 กรัมสามารถผลิต ขนมปังแป้งข้าวเจ้าได้ 1 ปอนด์

ก̄กธิกssuUsะกาศ

ขอขอบคุณ คณะบัณฑิตวิทยาลัย มหาวิทยาลัย นเศซวร ทบวงมหาวิทยาลัย และสถาบันสงงเสริมการสอน

วิทยาศาสตร์และเทคโนโลยี (สสวท.) ที่ให้ทุนสนับสนุนใน การทำวิจัย

เอกสางอ้างอิง

จิราภรณ์ สอดจิตร์. 2542. เอกสารประกอบการสอนวิชา การแปรูปออาหาร 2. ภาควิชาจุตสาหกรรมเกษตร คณะเกษตรศาสตร์ ทรัพยากรรรรมชาติและ สิ่งแวดล้อม มหาวิทยาลัยนเรควร. 239 หน้า. สุนทร สหัสโพธิ์. 2533 . ความสำคัญของอะไมโลสและ สารยึดเกาะในการผลิตขนมปังโดยใช้แเป้งข้าวเจ้า : วิทยานิพนธ์วิทยาศาสตรมหาบัณฑิต สาขา วิทยาศาสตร์การอาหาร ภาควิชาวิทยาศาสตร์ และเทคโนโลอี่การตาหาร มหาวิทยาลัยแกษตตศาสตร์ กุุงเทพมหานคร. 109 หน้า.
สำนักงานมาตรฐานผลิตภัณฑ์จุตสาหกรรม กระทรวง จุตสาหกรรม. 2534. มาตรฐานผลิตภัณฑ์แป้งสาลี ชนิดทำขนมปัง. เอกสาร มอก. ที่ $374-2534$. สำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม. กรุงเทพมหานคร. 14 หน้า.
อรทัย บูรณพานิชพันนุ์ และ ณัฐนี พูลสุวรรณ. 2529. การใช้แป้งชนิดอื่นที่ผลิตได้ภายในประเทศแทน แป้งสาลีบางส่วนในการทำขนมปัง. จุฟำลงกรณ์ มหาวิทยาลัย กรุงเทพมหานคร. 87 หน้า.
AOCS. 1978. Official and Tentation Methods of the American Oil Chemists' Society. Vol.1. 3^{rd}., Champaign, llinois. 315 p.
Arai, S. 1980. Deterioration of Food Proteins by Binding Unwanted Compounds Such As Flavours,

Lipids and Pigments, pp. 195-209, In Whitaker, J.R. and Fugimak; M. (eds.). Chemical Deterioration of Proteins. American Chemical Society, Washington, D.C.
Bowman, F., Dilsaver, W. and Loranz, K. 1973. Rationale for Baking Wheat, Gluterr- Egg- and Milik-Free Products. Baker's Dig. 47(2):15-21.
Chikubu, S. 1970. Stale Flavour of Stored Rice. Japan Agri. Rice Quat. 5(3):63-68.
Furuhashi, T. and Agano, Y. 1971. Effect of Vari ous Amino Acid on the Elemination of Stale Flavour in Rice II. Effect of Added Amino Acids on Stored Rice. J. Food Sci. Tech. 18(3) : 125 - 130 .
Nishita, K.D., Roberts, R.L., Bean, M.M. and Kennedy, B.M. 1976. Development of a Yeast Leavened Rice Bread Formula. Cereal Chem. 53 : 626-635.

Pomeranz, Y. 1985. Functional Properties of Food Components. Academic Press, Inc., Orlando, Florida. 535 p .
Ranhotra, G. S., Loewe, R. J. and Puyat, L.V. 1975. Preparation and Evaluation of Soy - forified Gluten - free Bread. J. Food Sci. 40: 62-64.

[^0]: ภาควิชาอุตสาหกรรมเกษตร คณะเกษตรศาสตร์ ทรัพยากรธรรมชาติและสิงแวดล้อม มหาวิทยาลัยนเรศวร Department of Agro - Industry , Faculty of Agriculture Natural Resources and Environment , Naresuan University.

[^1]: จิราภรณ์ สอดจิตร์, ธีรพร กงบังเกิด และ กนกกานต์ วีระกุล. "การพัฒนาสูตรแปังข้าวเจ้าสำเรัจรูปเพื่อผลิตขนมปัง โดยใข้กัวร์กัมเป็นสารยีตเกาะ" อาหาร 33,3 (ก.ศ1.-ก.ย. 2546) 222-232

[^2]: In the column, means followed by the same superscript are not significantly different ($p>0.05$).

[^3]: In the column, means followed by the same superscript are not significantly different ($p>0.05$).

